Part Number Hot Search : 
ATTINY GB302 PIC12F A1211 HC274 STLS10 TODV1240 P3500
Product Description
Full Text Search
 

To Download IRF440 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IRF440
Data Sheet March 1999 File Number
2308.3
8A, 500V, 0.850 Ohm, N-Channel Power MOSFET
This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. Formerly developmental type TA17425.
Features
* 8A, 500V * rDS(ON) = 0.850 * Single Pulse Avalanche Energy Rated * SOA is Power-Dissipation Limited * Nanosecond Switching Speeds * Linear Transfer Characteristics * High Input Impedance * Majority Carrier Device * Related Literature - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"
BRAND
Ordering Information
PART NUMBER IRF440 PACKAGE TO-204AE IRF440
Symbol
D
NOTE: When ordering, use the entire part number.
G
S
Packaging
JEDEC TO-204AE
DRAIN (FLANGE)
SOURCE (PIN 2) GATE (PIN 1)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999
IRF440
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified IRF440 500 500 8.0 5.0 32 20 125 1.0 510 -55 to 150 300 260 UNITS V V A A A V W W/oC A oC
oC oC
Drain To Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain To Gate Voltage (RGS = 20k) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate To Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 125oC.
Electrical Specifications
PARAMETER
TC = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS ID(ON) IGSS rDS(ON) gfs td(ON) tr td(OFF) tf Qg(TOT) Qgs Qgd CISS COSS CRSS LD Measured between the Contact Screw on Header that is Closer to Source and Gate Pins and Center of Die Measured from the Source Lead, 6mm (0.25in) from Header and Source Bonding Pad Modified MOSFET Symbol Showing the Internal Device Inductances
D LD G LS S
TEST CONDITIONS ID = 250A, VGS = 0V (Figure 10) VDS = VGS, ID = 250A VDS = Rated BVDSS, VGS = 0V VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ = 125oC VDS > ID(ON) x rDS(ON)MAX, VGS = 10V VGS = 20V ID = 4.4A, VGS = 10V (Figures 8, 9) VDS = 50V, ID = 4.4A (Figure 12) VDD = 250V, ID 8.0A, RG = 9.1, RL = 30, (Figure 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature
MIN 500 2.0 8.0 4.9 -
TYP 0.70 7.5 15 22 49 20 42 9 22 1225 200 85 5.0
MAX 4.0 25 250 100 0.850 21 35 74 30 63 -
UNITS V V A A A nA S ns ns ns ns nC nC nC pF pF pF nH
Drain To Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current
On-State Drain Current (Note 2) Gate to Source Leakage Current Drain to Source On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Drain Inductance
VGS = 10V, ID = 8.0A, VDS = 0.8 x Rated BVDSS , Ig(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature
-
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11)
-
Internal Source Inductance
LS
-
12.5
-
nH
Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient
RJC RJA Free Air Operation
-
-
1.0 30
oC/W oC/W
2
IRF440
Source To Drain Diode Specifications
PARAMETER Continuous Source to Drain Current Pulse Source to Drain Current (Note 3) SYMBOL ISD ISDM TEST CONDITIONS Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Rectifier
G D
MIN -
TYP -
MAX 8.0 32
UNITS A A
S
Drain to Source Diode Voltage (Note 2) Reverse Recovery Time Reverse Recovery Charge NOTE:
VSD trr QRR
TJ = 25oC, ISD = 8.0A, VGS = 0V (Figure 13) TJ = 25oC, ISD = 8.0A, dISD/dt = 100A/s TJ = 25oC, ISD = 8.0A, dISD/dt = 100A/s
210 2
460 4
2.0 970 8.9
V ns C
2. Pulse Test: Pulse Width 300s, Duty Cycle 2%. 3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance Curve (Figure 3). 4. VDD = 50V, starting TJ = 25oC, L = 14mH, RG = 25, peak IAS = 8.0A (Figures 15, 16).
Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 0 50 100 150 10
8
0.8 0.6 0.4 0.2 0
6
4
2
0 25
50
75
100
125
150
TC , CASE TEMPERATURE (oC)
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
ZJC , TRANSIENT THERMAL IMPEDANCE
2 1 0.5 0.2 0.1 0.1 0.05 0.02 0.01 10-2 SINGLE PULSE t1 t2
PDM
10-3 10-5
NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-4 10-3 0.1 10-2 RECTANGULAR PULSE DURATION (s) 1 10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
IRF440 Typical Performance Curves
102 10s ID, DRAIN CURRENT (A) 10 100s
(Continued)
15 VGS = 10V ID, DRAIN CURRENT (A) 12 80s PULSE TEST VGS = 6V
9 VGS = 5.5V
1
OPERATION IN THIS AREA LIMITED BY rDS(ON) TC = 25oC TJ = 150oC SINGLE PULSE 1 10 102
1ms
6
10ms DC
3
VGS = 5V VGS = 4V V GS = 4.5V
0.1
0 103 0 50 100 150 200 250 VDS , DRAIN TO SOURCE VOLTAGE (V)
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
FIGURE 5. OUTPUT CHARACTERISTICS
15 80s PULSE TEST 12 VGS = 6V VGS = 10V IDS(ON), DRAIN TO SOURCE
10
VDS 50V 80s PULSE TEST
ID, DRAIN CURRENT (A)
9
6
VGS = 5.5V
CURRENT (A)
1
0.1
TJ = 150oC
TJ = 25oC
3 VGS = 4V 0 0 3 6 9
VGS = 5V VGS = 4.5V
10-2 12 15 0 VDS , DRAIN TO SOURCE VOLTAGE (V) 2 4 6 8 VGS , GATE TO SOURCE VOLTAGE (V) 10
FIGURE 6. SATURATION CHARACTERISTICS
FIGURE 7. TRANSFER CHARACTERISTICS
10 80s PULSE TEST 8 ON RESISTANCE VGS = 10V 6 NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE
3.0
ID = 8.0A VGS = 10V
2.4
1.8
4 VGS = 20V 2
1.2
0.6
0 0 8 16 24 32 40 ID , DRAIN CURRENT (A)
0 -60
0
60
120
180
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
4
IRF440 Typical Performance Curves
1.25 ID = 250A NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.15 C, CAPACITANCE (pF) 2400
(Continued)
3000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGS
1.05
1800
CISS
0.95
1200 COSS 600 CRSS
0.85
0.75 -60
0 60 120 TJ, JUNCTION TEMPERATURE (oC)
180
0
1
10 VDS , DRAIN TO SOURCE VOLTAGE (V)
100
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
15 gfs, TRANSCONDUCTANCE (S)
12
TJ = 25oC
ISD, SOURCE TO DRAIN CURRENT (A)
VDS 50V 80s PULSE TEST
100
10
9 TJ = 150oC
6
1
TJ = 150oC
TJ = 25oC
3
0
0
3
6 9 ID , DRAIN CURRENT (A)
12
15
0.1 0
0.3 0.6 0.9 1.2 VSD , SOURCE TO DRAIN VOLTAGE (V)
1.5
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20 VGS, GATE TO SOURCE VOLTAGE (V)
ID = 8.0A
16
VDS = 400V VDS = 250V VDS = 100V
12
8
4
0 0
12
24 36 48 Qg(TOT), TOTAL GATE CHARGE (nC)
60
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
IRF440 Test Circuits and Waveforms
VDS tP IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG
+
BVDSS L VDS VDD
-
VDD
0V
IAS 0.01
0 tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON td(ON) tr VDS RL 90%
tOFF td(OFF) tf 90%
+
RG DUT
-
VDD
0
10% 90%
10%
VGS 0 10%
50% PULSE WIDTH
50%
VGS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
CURRENT REGULATOR
VDS (ISOLATED SUPPLY)
VDD Qg(TOT) VGS
12V BATTERY
0.2F
50k 0.3F
SAME TYPE AS DUT Qgs
Qgd
D G DUT 0
VDS
Ig(REF) 0 IG CURRENT SAMPLING RESISTOR
S VDS ID CURRENT SAMPLING RESISTOR
Ig(REF) 0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
6
IRF440
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
7


▲Up To Search▲   

 
Price & Availability of IRF440

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X